Browse by Keywords
Up a level |
Assogba, BS, Milesi, P, Djogbénou, LS, Berthomieu, A, Makoundou, P, Baba-Moussa, LS, Fiston-Lavier, A, Belkir, K, Labbé, P, Weill, M and Belkhir, K (2017). Data from: The ace-1 locus is amplified in all resistant Anopheles gambiae mosquitoes: fitness consequences of homogeneous and heterogeneous duplications. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.4f7qg
Athrey, G, Hodges, TK, Reddy, MR, Overgaard, H, Matias, A, Ridl, FC, Kleinschmidt, I, Caccone, A and Slotman, MA (2013). Data from: Effective population size of malaria mosquitoes: large impact of vector control. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.1rf75
Barreaux, AMG, Oumbouke, W, Zran Tia, I, Brou, N, Koffi, AA, N'guessan, R and Thomas, MB (2019). Semi-field evaluation of the cumulative effects of a “Lethal House Lure” on malaria mosquito mortality. [Data Collection]. Malaria Journal. https://doi.org/10.1186/s12936-019-2936-2
Barreaux, P, Koella, JC, N'guessan, R and Thomas, MB (2022). Use of novel lab assays to examine the effect of pyrethroid-treated bed nets on blood-feeding success and longevity of highly insecticide-resistant Anopheles gambiae s.l. mosquitoes. [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.c.5919335.v1
Bousema, T (2024). Data from: Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.dbrv15f89
Caputo, B, Nwakanma, D, Caputo, FP, Jawara, M, Oriero, C, Adiamoh, M, Dia, I, Konate, L, Petrarca, V, Pinto, J, Conway, DJ, della Torre, A, Oriero, EC and Hamid-Adiamoh, M (2014). Data from: Prominent intra-specific genetic divergence within Anopheles gambiae sibling species triggered by habitat discontinuities across a riverine landscape. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.601fk
Churcher, TS, Bousema, T, Walker, M, Drakeley, C, Schneider, P, Ouédraogo, AL and Basáñez, M (2013). Data from: Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.0k402
Deitz, KC, Athrey, G, Reddy, MR, Overgaard, HJ, Matias, A, Jawara, M, della Torre, A, Petrarca, V, Pinto, J, Kiszewski, AE, Kengne, P, Costantini, C, Caccone, A, Slotman, MA, Jawara, M and Athrey, G (2012). Data from: Genetic isolation within the malaria mosquito Anopheles melas. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.d15d4
Fongnikin, A, Odjo, A, Akpi, J, Kiki, L and Ngufor, C (2022). Detailed experimental hut data against wild free-flying pyrethroid resistant An gambiae s.l. in Cove, Benin. [Data Collection]. PLOS ONE. https://doi.org/10.1371/journal.pone.0267229.s001
Glunt, KD, Coetzee, M, Huijben, S, Koffi, AA, Lynch, PA, N'Guessan, R, Oumbouke, WA, Sternberg, ED and Thomas, MB (2017). Data from: Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed nets. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.vj78t
Hamid-Adiamoh, M, Nwakanma, D, Assogba, SB, Ndiath, MO, D'Alessandro, U, Afrane, YA and Amambua-Ngwa, A (2021). Overall data including separate worksheets for genotypic resistance and species genotypes; host blood meal and sporozoite positivity data. [Data Collection]. PLOS One. https://doi.org/10.1371/journal.pone.0241023.s001
Kaindoa, EW, Matowo, NS, Ngowo, HS, Mkandawile, G, Mmbando, A, Finda, M and Okumu, FO (2017). Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania. Supplementary data. [Data Collection]. PLOS ONE. https://doi.org/10.1371/journal.pone.0177807.s001
London School of Hygiene & Tropical Medicine (2024). Anopheles gambiae Bijagos 2022 WGS. [Data Collection]. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB71957
Lorenz, L and Koella, JC (2011). Data from: The microsporidian parasite Vavraia culicis as a potential late life-acting control agent of malaria. [Data Collection]. Dryad digital repository. https://doi.org/10.5061/dryad.2s231
Lukindu, M, Bergey, CM, Wiltshire, RM, Small, ST, Bourke, BP, Kayondo, JK and Besansky, NJ (2019). Data from: Spatio-temporal genetic structure of Anopheles gambiae in the Northwestern Lake Victoria Basin, Uganda: implications for genetic control trials in malaria endemic regions. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.7p177s7
Moyes, CL, Wiebe, A, Gleave, K, Trett, A, Hancock, PA, Padonou, GG, Chouaïbou, MS, Sovi, A, Abuelmaali, SA, Ochomo, E, Antonio-Nkondjio, C, Dengela, D, Kawada, H, Dabire, RK, Donnelly, MJ, Mbogo, C, Fornadel, C and Coleman, M (2019). Data from: Analysis-ready datasets for insecticide resistance phenotype and genotype frequency in African malaria vectors. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.dn4676s
Mwakalinga, VM, Sartorius, BKD, Limwagu, AJ, Mlacha, YP, Msellemu, DF, Chaki, PP, Govella, NJ, Coetzee, M, Dongus, S and Killeen, GF (2018). Data from: Topographic mapping of the interfaces between human and aquatic mosquito habitats to enable barrier-targeting of interventions against malaria vectors. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.77vq6gs
N'guessan, R, Odjo, A, Ngufor, C, Malone, D and Rowland, M (2016). Experimental hut data. [Data Collection]. PLOS ONE. https://doi.org/10.1371/journal.pone.0165925.s001
Ngufor, C, Critchley, J, Fagbohoun, J, N'guessan, R, Todjinou, D and Rowland, M (2016). Experimental hut data. [Data Collection]. Figshare. https://doi.org/10.1371/journal.pone.0162210.s001
Ouédraogo, AL, Bousema, T, Schneider, P, de Vlas, SJ, Ilboudo-Sanogo, E, Cuzin-Ouattara, N, Nébié, I, Roeffen, W, Verhave, JP, Luty, AJF and Sauerwein, R (2013). Data from: Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.hv01f
Oxborough, RM, Seyoum, A, Yihdego, Y, Chabi, J, Wat’senga, F, Agossa, FR, Coleman, S, Musa, SL, Faye, O, Okia, M, Bayoh, M, Alyko, E, Rakotoson, J, Masendu, H, Sovi, A, Gadiaga, L, Abong’o, B, Opondo, K, Baber, I, Dabire, R, Gnanguenon, V, Yohannes, G, Varela, K, Fondjo, E, Carlson, J, Armistead, JS and Dengela, D (2021). Additional file 1 of Determination of the discriminating concentration of chlorfenapyr (pyrrole) and Anopheles gambiae sensu lato susceptibility testing in preparation for distribution of Interceptor® G2 insecticide-treated nets. [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.14984900.v1
Oxborough, RM, Seyoum, A, Yihdego, Y, Chabi, J, Wat’senga, F, Agossa, FR, Coleman, S, Musa, SL, Faye, O, Okia, M, Bayoh, M, Alyko, E, Rakotoson, J, Masendu, H, Sovi, A, Gadiaga, L, Abong’o, B, Opondo, K, Baber, I, Dabire, R, Gnanguenon, V, Yohannes, G, Varela, K, Fondjo, E, Carlson, J, Armistead, JS and Dengela, D (2021). Additional file 2 of Determination of the discriminating concentration of chlorfenapyr (pyrrole) and Anopheles gambiae sensu lato susceptibility testing in preparation for distribution of Interceptor® G2 insecticide-treated nets. [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.14984906.v1
Oxborough, RM, Seyoum, A, Yihdego, Y, Chabi, J, Wat’senga, F, Agossa, FR, Coleman, S, Musa, SL, Faye, O, Okia, M, Bayoh, M, Alyko, E, Rakotoson, J, Masendu, H, Sovi, A, Gadiaga, L, Abong’o, B, Opondo, K, Baber, I, Dabire, R, Gnanguenon, V, Yohannes, G, Varela, K, Fondjo, E, Carlson, J, Armistead, JS and Dengela, D (2021). Additional file 3 of Determination of the discriminating concentration of chlorfenapyr (pyrrole) and Anopheles gambiae sensu lato susceptibility testing in preparation for distribution of Interceptor® G2 insecticide-treated nets. [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.14984909.v1
Salgueiro, P, Lopes, AS, Mendes, C, Charlwood, JD, Arez, AP, Pinto, J and Silveira, H (2016). Additional file 2: Table 2. of Molecular evolution and population genetics of a Gram-negative binding protein gene in the malaria vector Anopheles gambiae (sensu lato). [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.c.3631073_D2.v1
Schneider, P, Bousema, T, Gouagna, LC, Otieno, S, van de Vegte-Bolmer, M, Omar, SA and Sauerwein, RW (2013). Data from: Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. [Data Collection]. Dryad. https://doi.org/10.5061/dryad.589ft
Syme, T, N'dombidje, B, Todjinou, D, Ariori, V and Ngufor, C (2024). Data for: Laboratory evaluation of the regeneration time, efficacy and wash-resistance of PermaNet® Dual (a deltamethrin-chlorfenapyr net) against susceptible and pyrethroid-resistant strains of Anopheles gambiae sensu lato. [Data Collection]. London School of Hygiene & Tropical Medicine, London, United Kingdom. https://doi.org/10.17037/DATA.00004261.