Masala, G, Lipsitch, M, Bottomley, C and Flasche, S. 2017. Supplementary material from "Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination". [Online]. Figshare. Available from: https://doi.org/10.6084/m9.figshare.c.3911881.v1
Masala, G, Lipsitch, M, Bottomley, C and Flasche, S. Supplementary material from "Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination" [Internet]. Figshare; 2017. Available from: https://doi.org/10.6084/m9.figshare.c.3911881.v1
Masala, G, Lipsitch, M, Bottomley, C and Flasche, S (2017). Supplementary material from "Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination". [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.c.3911881.v1
Description
The competitive pressure from non-vaccine serotypes may have helped pneumococcal conjugate vaccines (PCVs) to limit vaccine-type (VT) serotype prevalence. We aimed to investigate if, consequently, the indirect protection of vaccines targeting most pneumococcal serotypes could fall short of the profound effects of current formulations. We compared three previously described pneumococcal models harmonized to simulate 20 serotypes with a combined pre-vaccination prevalence in less than 5-year-old children of 40%. We simulated vaccines of increasing valency by adding serotypes in order of their competitiveness and explored their ability to reduce VT carriage by 95% within 10 years after introduction. All models predicted that additional valency will reduce indirect vaccine effects and hence the overall vaccine impact on carriage both in children and adults. Consequently, the minimal effective coverage (efficacy against carriage × vaccine coverage) needed to eliminate VT carriage increased with increasing valency. One model predicted this effect to be modest, while the other two predicted that high-valency vaccines may struggle to eliminate VT pneumococci unless vaccine efficacy against carriage can be substantially improved. Similar results were obtained when settings of higher transmission intensity and different PCV formulations were explored. Failure to eliminate carriage as a result of increased valency could lead to overall decreased impact of vaccination if the disease burden caused by the added serotypes is low. Hence, a comparison of vaccine formulations of varying valency, and pan-valent formulations in particular, should consider the invasiveness of targeted serotypes, as well as efficacy against carriage.
Keywords
Data capture method | Experiment |
---|---|
Date (Date published in a 3rd party system) | 24 October 2017 |
Language(s) of written materials | English |
Data Creators | Masala, G, Lipsitch, M, Bottomley, C and Flasche, S |
---|---|
LSHTM Faculty/Department | Faculty of Epidemiology and Population Health > Dept of Infectious Disease Epidemiology |
Participating Institutions | London School of Hygiene & Tropical Medicine, London, United Kingdom, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America |
Funders |
|
---|
Date Deposited | 01 Dec 2017 11:28 |
---|---|
Last Modified | 27 Apr 2022 18:19 |
Publisher | Figshare |