Sabatini, R, Stortz, JA, Serafim, TD, Alsford, S, Wilkes, J, Fernandez-Cortes, F, Hamilton, G, Briggs, E, Lemgruber, L, Horn, D, Mottram, JC and McCulloch, R. 2017. Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei. [Online]. Figshare. Available from: https://doi.org/10.1371/journal.ppat.1006477
Sabatini, R, Stortz, JA, Serafim, TD, Alsford, S, Wilkes, J, Fernandez-Cortes, F, Hamilton, G, Briggs, E, Lemgruber, L, Horn, D, Mottram, JC and McCulloch, R. Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei [Internet]. Figshare; 2017. Available from: https://doi.org/10.1371/journal.ppat.1006477
Sabatini, R, Stortz, JA, Serafim, TD, Alsford, S, Wilkes, J, Fernandez-Cortes, F, Hamilton, G, Briggs, E, Lemgruber, L, Horn, D, Mottram, JC and McCulloch, R (2017). Genome-wide and protein kinase-focused RNAi screens reveal conserved and novel damage response pathways in Trypanosoma brucei. [Data Collection]. Figshare. https://doi.org/10.1371/journal.ppat.1006477
Description
ll cells are subject to structural damage that must be addressed for continued growth. A wide range of damage affects the genome, meaning multiple pathways have evolved to repair or bypass the resulting DNA lesions. Though many repair pathways are conserved, their presence or function can reflect the life style of individual organisms. To identify genome maintenance pathways in a divergent eukaryote and important parasite, Trypanosoma brucei, we performed RNAi screens to identify genes important for survival following exposure to the alkylating agent methyl methanesulphonate. Amongst a cohort of broadly conserved and, therefore, early evolved repair pathways, we reveal multiple activities not so far examined functionally in T. brucei, including DNA polymerases, DNA helicases and chromatin factors. In addition, the screens reveal Trypanosoma- or kinetoplastid-specific repair-associated activities. We also provide focused analyses of repair-associated protein kinases and show that loss of at least nine, and potentially as many as 30 protein kinases, including a nuclear aurora kinase, sensitises T. brucei to alkylation damage. Our results demonstrate the potential for synthetic lethal genome-wide screening of gene function in T. brucei and provide an evolutionary perspective on the repair pathways that underpin effective responses to damage, with particular relevance for related kinetoplastid pathogens. By revealing that a large number of diverse T. brucei protein kinases act in the response to damage, we expand the range of eukaryotic signalling factors implicated in genome maintenance activities.
Data capture method | Experiment |
---|---|
Date (Date published in a 3rd party system) | 24 July 2017 |
Language(s) of written materials | English |
Data Creators | Sabatini, R, Stortz, JA, Serafim, TD, Alsford, S, Wilkes, J, Fernandez-Cortes, F, Hamilton, G, Briggs, E, Lemgruber, L, Horn, D, Mottram, JC and McCulloch, R |
---|---|
LSHTM Faculty/Department | Faculty of Infectious and Tropical Diseases > Dept of Pathogen Molecular Biology |
Participating Institutions | London School of Hygiene & Tropical Medicine |
Funders |
|
---|
Date Deposited | 25 Aug 2017 09:13 |
---|---|
Last Modified | 08 Jul 2021 12:52 |
Publisher | Figshare |