Srilohasin, P, Prammananan, T, Faksri, K, Phelan, JE, Suriyaphol, P, Kamolwat, P, Smithtikarn, S, Disratthakit, A, Regmi, SM, Leechawengwongs, M, Twee-Hee Ong, R, Teo, YY, Tongsima, S, Clark, TG and Chaiprasert, A. 2020. Genomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto-Beijing genotype. [Online]. Figshare. Available from: https://doi.org/10.6084/m9.figshare.13378598.v1
Srilohasin, P, Prammananan, T, Faksri, K, Phelan, JE, Suriyaphol, P, Kamolwat, P, Smithtikarn, S, Disratthakit, A, Regmi, SM, Leechawengwongs, M, Twee-Hee Ong, R, Teo, YY, Tongsima, S, Clark, TG and Chaiprasert, A. Genomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto-Beijing genotype [Internet]. Figshare; 2020. Available from: https://doi.org/10.6084/m9.figshare.13378598.v1
Srilohasin, P, Prammananan, T, Faksri, K, Phelan, JE, Suriyaphol, P, Kamolwat, P, Smithtikarn, S, Disratthakit, A, Regmi, SM, Leechawengwongs, M, Twee-Hee Ong, R, Teo, YY, Tongsima, S, Clark, TG and Chaiprasert, A (2020). Genomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto-Beijing genotype. [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.13378598.v1
Description
Tuberculosis disease (TB), caused by Mycobacterium tuberculosis, is a major public health issue in Thailand. The high prevalence of modern Beijing (Lineage 2.2.1) strains has been associated with multi- and extensively drug-resistant infections (MDR-, XDR-TB), complicating disease control. The impact of rarer proto-Beijing (L2.1) strains is less clear. In our study of thirty-seven L2.1 clinical isolates spanning thirteen years, we found a high prevalence of XDR-TB cases (32.4%). With ≤ 12 pairwise SNP distances, 43.2% of L2.1 patients belong to MDR-TB or XDR-TB transmission clusters suggesting a high level of clonal expansion across four Thai provinces. All XDR-TB (100%) were likely due to transmission rather than inadequate treatment. We found a 47 mutation signature and a partial deletion of the fadD14 gene in the circulating XDR-TB cluster, which can be used for surveillance of this rare and resilient M. tuberculosis strain-type that is causing increasing health burden. We also detected three novel deletion positions, a deletion of 1285 bp within desA3 (Rv3230c), large deletions in the plcB, plcA, and ppe38 gene which may play a role in the virulence, pathogenesis or evolution of the L2.1 strain-type.
Keywords
Data capture method | Unknown |
---|---|
Date (Date published in a 3rd party system) | 15 December 2020 |
Language(s) of written materials | English |
Data Creators | Srilohasin, P, Prammananan, T, Faksri, K, Phelan, JE, Suriyaphol, P, Kamolwat, P, Smithtikarn, S, Disratthakit, A, Regmi, SM, Leechawengwongs, M, Twee-Hee Ong, R, Teo, YY, Tongsima, S, Clark, TG and Chaiprasert, A |
---|---|
LSHTM Faculty/Department | Faculty of Infectious and Tropical Diseases > Department of Infection Biology |
Participating Institutions | London School of Hygiene & Tropical Medicine, London, United Kingdom |
Date Deposited | 13 Aug 2024 15:40 |
---|---|
Last Modified | 13 Aug 2024 15:40 |
Publisher | Figshare |