S1 Data - Heterogeneity within the Oregon Health Insurance Experiment: An application of causal forests

Hattab, ZORCID logo; Doherty, E; Ryan, AM and O'Neill, SORCID logo (2024). S1 Data - Heterogeneity within the Oregon Health Insurance Experiment: An application of causal forests. [Dataset]. PLOS ONE. https://doi.org/10.1371/journal.pone.0297205.s030
Copy

Existing evidence regarding the effects of Medicaid expansion, largely focused on aggregate effects, suggests health insurance impacts some health, healthcare utilization, and financial hardship outcomes. In this study we apply causal forest and instrumental forest methods to data from the Oregon Health Insurance Experiment (OHIE), to explore heterogeneity in the uptake of health insurance, and in the effects of (a) lottery selection and (b) health insurance on a range of health-related outcomes. The findings of this study suggest that the impact of winning the lottery on the health insurance uptake varies among different subgroups based on age and race. In addition, the results generally coincide with findings in the literature regarding the overall effects: lottery selection (and insurance) reduces out-of-pocket spending, increases physician visits and drug prescriptions, with little (short-term) impact on the number of emergency department visits and hospital admissions. Despite this, we detect quite weak evidence of heterogeneity in the effects of the lottery and of health insurance across the outcomes considered.

Keywords

Health insurance

No files available. Please consult associated links.


Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core (with Type as Type) MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON METS MODS RDF+N3 RDF+N-Triples RDF+XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export