Optimal Whitening and Decorrelation

Kessy, A, Lewin, AORCID logo and Strimmer, K (2017). Optimal Whitening and Decorrelation. [Data Collection]. Figshare. https://doi.org/10.6084/m9.figshare.4568002.v1
Copy

Whitening, or sphering, is a common preprocessing step in statistical analysis to transform random variables to orthogonality. However, due to rotational freedom there are infinitely many possible whitening procedures. Consequently, there is a diverse range of sphering methods in use, for example based on principal component analysis (PCA), Cholesky matrix decomposition and zero-phase component analysis (ZCA), among others. Here we provide an overview of the underlying theory and discuss five natural whitening procedures. Subsequently, we demonstrate that investigating the cross-covariance and the cross-correlation matrix between sphered and original variables allows to break the rotational invariance and to identify optimal whitening transformations. As a result we recommend two particular approaches: ZCA-cor whitening to produce sphered variables that are maximally similar to the original variables, and PCA-cor whitening to obtain sphered variables that maximally compress the original variables.

Keywords

CAR score, CAT score, Cholesky decomposition, Decorrelation, Principal components analysis, Whitening, ZCA-Mahalanobis transformation

No files available. Please consult associated links.


Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core (with Type as Type) MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON METS MODS RDF+N3 RDF+N-Triples RDF+XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads