Abstract Background Mutations in the Rv0678, pepQ and atpE genes of Mycobacterium tuberculosis (MTB) have been reported to be associated with reduced antimycobacterial susceptibility to bedaquiline (BDQ). Resistance conferring mutations in treatment naïve MTB strains is likely to have implications for BDQ based new drug regimen that aim to shorten treatment duration. We therefore investigated the genetic basis of resistance to BDQ in MTB clinical isolates from BDQ naïve TB patients from Pakistan. In addition, mutations in genes associated with efflux pumps were investigated as an alternate mechanism of resistance. Methods Based on convenience sampling, we studied 48 MTB clinical isolates from BDQ naïve TB patients. These isolates (from our strain bank) included 38 MDR/pre-XDR/XDR (10 BDQ resistant, 8 BDQ intermediate and 20 BDQ susceptible) and 10 pan drug susceptible MTB isolates. All strains were subjected to whole genome sequencing and genomes were analysed to identify variants in Rv0678, pepQ, atpE, Rv1979c, mmpLS and mmpL5 and drug resistance associated efflux pump genes. Results Of the BDQ resistant and intermediate strains 44% (8/18) had variants in Rv0678 including; two reported mutations S63R/G, six previously unreported variants; L40F, R50Q and R107C and three frameshift mutations; G25fs, D64fs and D109fs. Variants in efflux pumps; Rv1273c (G462K), Rv0507c (R426H) and Rv1634c (E198R) were found to be present in drug resistant isolates including BDQ resistant and intermediate isolates. E198R in efflux pump gene Rv1634c was the most frequently occurring variant in BDQ resistant and intermediate isolates (n = 10). Conclusion We found RAVs in Rv0678 to be commonly associated with BDQ resistance. Further confirmation of the role of variants in efflux pump genes in resistance is required so that they may be incorporated in genome-based diagnostics for drug resistant MTB.