--- title: "iron inadequacy" author: "R Goto" date: "2023-12-03" output: html_document --- ## 7.1. Settings ```{r eval=FALSE} library(tidyverse) library(summarytools) library(survey) library(srvyr) ``` ## 7.2. Dataset ```{r eval=FALSE} nafet <- read_csv("nafet.csv") # estimated micronutrient intake per day per AFE in no fortification nafetF <- read_csv("nafetF.csv") # estimated micronutrient intake per day per AFE in status quo and full fortification scenarios dataAw <- read_csv("dataAw.csv") # data including weighting factors ``` options(scipen = 10, digits=3) ## 7.3. Full probability approach for estimaing iron inadequecy (see Allen et al. 2006, pages 156-159) ### 7.3.1. No fortification ```{r eval=FALSE} nafetAw <- left_join(nafet, dataAw, by = "y4_hhid") # in total fe_prob <- nafetAw %>% mutate(feprob = case_when( feafet <= 15 ~ 1, feafet <= 16.7 & feafet > 15 ~ 0.96, feafet <= 18.7 & feafet > 16.7 ~ 0.93, feafet <= 21.4 & feafet > 18.7 ~ 0.85, feafet <= 23.6 & feafet > 21.4 ~ 0.75, feafet <= 25.7 & feafet > 23.6 ~ 0.65, feafet <= 27.8 & feafet > 25.7 ~ 0.55, feafet <= 30.2 & feafet > 27.8 ~ 0.45, feafet <= 33.2 & feafet > 30.2 ~ 0.35, feafet <= 37.3 & feafet > 33.2 ~ 0.25, feafet <= 45.0 & feafet > 37.3 ~ 0.15, feafet <= 53.5 & feafet > 45.0 ~ 0.08, feafet <= 63.0 & feafet > 53.5 ~ 0.04, feafet > 63 ~ 0)) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # e.g. calculate the value 2458.37/3290=0.7472 (74.7%) # in rural/urban fe_probur <- nafetAw %>% mutate(feprob = case_when( feafet <= 15 ~ 1, feafet <= 16.7 & feafet > 15 ~ 0.96, feafet <= 18.7 & feafet > 16.7 ~ 0.93, feafet <= 21.4 & feafet > 18.7 ~ 0.85, feafet <= 23.6 & feafet > 21.4 ~ 0.75, feafet <= 25.7 & feafet > 23.6 ~ 0.65, feafet <= 27.8 & feafet > 25.7 ~ 0.55, feafet <= 30.2 & feafet > 27.8 ~ 0.45, feafet <= 33.2 & feafet > 30.2 ~ 0.35, feafet <= 37.3 & feafet > 33.2 ~ 0.25, feafet <= 45.0 & feafet > 37.3 ~ 0.15, feafet <= 53.5 & feafet > 45.0 ~ 0.08, feafet <= 63.0 & feafet > 53.5 ~ 0.04, feafet > 63 ~ 0)) %>% group_by(clustertype) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # e.g. rural 1399.41/1958=71.5%, urban 1058.96/1332=79.5% # in strata fe_probdo <- nafetAw %>% mutate(feprob = case_when( feafet <= 15 ~ 1, feafet <= 16.7 & feafet > 15 ~ 0.96, feafet <= 18.7 & feafet > 16.7 ~ 0.93, feafet <= 21.4 & feafet > 18.7 ~ 0.85, feafet <= 23.6 & feafet > 21.4 ~ 0.75, feafet <= 25.7 & feafet > 23.6 ~ 0.65, feafet <= 27.8 & feafet > 25.7 ~ 0.55, feafet <= 30.2 & feafet > 27.8 ~ 0.45, feafet <= 33.2 & feafet > 30.2 ~ 0.35, feafet <= 37.3 & feafet > 33.2 ~ 0.25, feafet <= 45.0 & feafet > 37.3 ~ 0.15, feafet <= 53.5 & feafet > 45.0 ~ 0.08, feafet <= 63.0 & feafet > 53.5 ~ 0.04, feafet > 63 ~ 0)) %>% group_by(domain) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # e.g. Dar es salaam 431.72/539=80.1%, Mainland urban 387.22/529=73.2%, Mainland rural 1221.15/1757=69.5%, Zanzibar 418.28/465=90.0% ``` ### 7.3.2. Status quo ```{r eval=FALSE} names(nafetF) nafetFAw <- left_join(nafetF, dataAw, by = "y4_hhid") # in total fe_probpf <- nafetFAw %>% mutate(feprob = case_when( feafetpf <= 15 ~ 1, feafetpf <= 16.7 & feafetpf > 15 ~ 0.96, feafetpf <= 18.7 & feafetpf > 16.7 ~ 0.93, feafetpf <= 21.4 & feafetpf > 18.7 ~ 0.85, feafetpf <= 23.6 & feafetpf > 21.4 ~ 0.75, feafetpf <= 25.7 & feafetpf > 23.6 ~ 0.65, feafetpf <= 27.8 & feafetpf > 25.7 ~ 0.55, feafetpf <= 30.2 & feafetpf > 27.8 ~ 0.45, feafetpf <= 33.2 & feafetpf > 30.2 ~ 0.35, feafetpf <= 37.3 & feafetpf > 33.2 ~ 0.25, feafetpf <= 45.0 & feafetpf > 37.3 ~ 0.15, feafetpf <= 53.5 & feafetpf > 45.0 ~ 0.08, feafetpf <= 63.0 & feafetpf > 53.5 ~ 0.04, feafetpf > 63 ~ 0)) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # by urban/rural fe_probpfur <- nafetFAw %>% mutate(feprob = case_when( feafetpf <= 15 ~ 1, feafetpf <= 16.7 & feafetpf > 15 ~ 0.96, feafetpf <= 18.7 & feafetpf > 16.7 ~ 0.93, feafetpf <= 21.4 & feafetpf > 18.7 ~ 0.85, feafetpf <= 23.6 & feafetpf > 21.4 ~ 0.75, feafetpf <= 25.7 & feafetpf > 23.6 ~ 0.65, feafetpf <= 27.8 & feafetpf > 25.7 ~ 0.55, feafetpf <= 30.2 & feafetpf > 27.8 ~ 0.45, feafetpf <= 33.2 & feafetpf > 30.2 ~ 0.35, feafetpf <= 37.3 & feafetpf > 33.2 ~ 0.25, feafetpf <= 45.0 & feafetpf > 37.3 ~ 0.15, feafetpf <= 53.5 & feafetpf > 45.0 ~ 0.08, feafetpf <= 63.0 & feafetpf > 53.5 ~ 0.04, feafetpf > 63 ~ 0)) %>% group_by(clustertype) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # by strata fe_probpfdo <- nafetFAw %>% mutate(feprob = case_when( feafetpf <= 15 ~ 1, feafetpf <= 16.7 & feafetpf > 15 ~ 0.96, feafetpf <= 18.7 & feafetpf > 16.7 ~ 0.93, feafetpf <= 21.4 & feafetpf > 18.7 ~ 0.85, feafetpf <= 23.6 & feafetpf > 21.4 ~ 0.75, feafetpf <= 25.7 & feafetpf > 23.6 ~ 0.65, feafetpf <= 27.8 & feafetpf > 25.7 ~ 0.55, feafetpf <= 30.2 & feafetpf > 27.8 ~ 0.45, feafetpf <= 33.2 & feafetpf > 30.2 ~ 0.35, feafetpf <= 37.3 & feafetpf > 33.2 ~ 0.25, feafetpf <= 45.0 & feafetpf > 37.3 ~ 0.15, feafetpf <= 53.5 & feafetpf > 45.0 ~ 0.08, feafetpf <= 63.0 & feafetpf > 53.5 ~ 0.04, feafetpf > 63 ~ 0)) %>% group_by(domain) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) ``` ### 7.3.3. full fortification ```{r eval=FALSE} # in total fe_probff <- nafetFAw %>% mutate(feprob = case_when( feafetff <= 15 ~ 1, feafetff <= 16.7 & feafetff > 15 ~ 0.96, feafetff <= 18.7 & feafetff > 16.7 ~ 0.93, feafetff <= 21.4 & feafetff > 18.7 ~ 0.85, feafetff <= 23.6 & feafetff > 21.4 ~ 0.75, feafetff <= 25.7 & feafetff > 23.6 ~ 0.65, feafetff <= 27.8 & feafetff > 25.7 ~ 0.55, feafetff <= 30.2 & feafetff > 27.8 ~ 0.45, feafetff <= 33.2 & feafetff > 30.2 ~ 0.35, feafetff <= 37.3 & feafetff > 33.2 ~ 0.25, feafetff <= 45.0 & feafetff > 37.3 ~ 0.15, feafetff <= 53.5 & feafetff > 45.0 ~ 0.08, feafetff <= 63.0 & feafetff > 53.5 ~ 0.04, feafetff > 63 ~ 0)) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # by urban/rural fe_probffur <- nafetFAw %>% mutate(feprob = case_when( feafetff <= 15 ~ 1, feafetff <= 16.7 & feafetff > 15 ~ 0.96, feafetff <= 18.7 & feafetff > 16.7 ~ 0.93, feafetff <= 21.4 & feafetff > 18.7 ~ 0.85, feafetff <= 23.6 & feafetff > 21.4 ~ 0.75, feafetff <= 25.7 & feafetff > 23.6 ~ 0.65, feafetff <= 27.8 & feafetff > 25.7 ~ 0.55, feafetff <= 30.2 & feafetff > 27.8 ~ 0.45, feafetff <= 33.2 & feafetff > 30.2 ~ 0.35, feafetff <= 37.3 & feafetff > 33.2 ~ 0.25, feafetff <= 45.0 & feafetff > 37.3 ~ 0.15, feafetff <= 53.5 & feafetff > 45.0 ~ 0.08, feafetff <= 63.0 & feafetff > 53.5 ~ 0.04, feafetff > 63 ~ 0)) %>% group_by(clustertype) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # by strata fe_probffdo <- nafetFAw %>% mutate(feprob = case_when( feafetff <= 15 ~ 1, feafetff <= 16.7 & feafetff > 15 ~ 0.96, feafetff <= 18.7 & feafetff > 16.7 ~ 0.93, feafetff <= 21.4 & feafetff > 18.7 ~ 0.85, feafetff <= 23.6 & feafetff > 21.4 ~ 0.75, feafetff <= 25.7 & feafetff > 23.6 ~ 0.65, feafetff <= 27.8 & feafetff > 25.7 ~ 0.55, feafetff <= 30.2 & feafetff > 27.8 ~ 0.45, feafetff <= 33.2 & feafetff > 30.2 ~ 0.35, feafetff <= 37.3 & feafetff > 33.2 ~ 0.25, feafetff <= 45.0 & feafetff > 37.3 ~ 0.15, feafetff <= 53.5 & feafetff > 45.0 ~ 0.08, feafetff <= 63.0 & feafetff > 53.5 ~ 0.04, feafetff > 63 ~ 0)) %>% group_by(domain) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) ```