--- title: "iron inadequacy -2 without maize flour fortification" author: "R Goto" date: "2023-12-03" output: html_document --- ## 9.1. Settings ```{r eval=FALSE} library(tidyverse) library(summarytools) library(survey) library(srvyr) ``` ## 9.2. Dataset ```{r eval=FALSE} nafetF2 <- read_csv("nafetF2.csv") # estimated micronutrient intake per day per AFE in status quo and full fortification scenarios WITHOUT maize flour fortification dataAw <- read_csv("dataAw.csv") # data including weighting factors ``` options(scipen = 10, digits=3) ## 9.3. Full probability approach for estimaing iron inadequecy (see Allen et al. 2006, pages 156-159) ```{r eval=FALSE} names(nafetF2) nafetF2Aw <- left_join(nafetF2, dataAw, by = "y4_hhid") ## full fortification without maize # in total fe_probffm <- nafetF2Aw %>% mutate(feprob = case_when( feafetff <= 15 ~ 1, feafetff <= 16.7 & feafetff > 15 ~ 0.96, feafetff <= 18.7 & feafetff > 16.7 ~ 0.93, feafetff <= 21.4 & feafetff > 18.7 ~ 0.85, feafetff <= 23.6 & feafetff > 21.4 ~ 0.75, feafetff <= 25.7 & feafetff > 23.6 ~ 0.65, feafetff <= 27.8 & feafetff > 25.7 ~ 0.55, feafetff <= 30.2 & feafetff > 27.8 ~ 0.45, feafetff <= 33.2 & feafetff > 30.2 ~ 0.35, feafetff <= 37.3 & feafetff > 33.2 ~ 0.25, feafetff <= 45.0 & feafetff > 37.3 ~ 0.15, feafetff <= 53.5 & feafetff > 45.0 ~ 0.08, feafetff <= 63.0 & feafetff > 53.5 ~ 0.04, feafetff > 63 ~ 0)) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # by urban/rural fe_probffmur <- nafetF2Aw %>% mutate(feprob = case_when( feafetff <= 15 ~ 1, feafetff <= 16.7 & feafetff > 15 ~ 0.96, feafetff <= 18.7 & feafetff > 16.7 ~ 0.93, feafetff <= 21.4 & feafetff > 18.7 ~ 0.85, feafetff <= 23.6 & feafetff > 21.4 ~ 0.75, feafetff <= 25.7 & feafetff > 23.6 ~ 0.65, feafetff <= 27.8 & feafetff > 25.7 ~ 0.55, feafetff <= 30.2 & feafetff > 27.8 ~ 0.45, feafetff <= 33.2 & feafetff > 30.2 ~ 0.35, feafetff <= 37.3 & feafetff > 33.2 ~ 0.25, feafetff <= 45.0 & feafetff > 37.3 ~ 0.15, feafetff <= 53.5 & feafetff > 45.0 ~ 0.08, feafetff <= 63.0 & feafetff > 53.5 ~ 0.04, feafetff > 63 ~ 0)) %>% group_by(clustertype) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) # by strata fe_probffmdo <- nafetF2Aw %>% mutate(feprob = case_when( feafetff <= 15 ~ 1, feafetff <= 16.7 & feafetff > 15 ~ 0.96, feafetff <= 18.7 & feafetff > 16.7 ~ 0.93, feafetff <= 21.4 & feafetff > 18.7 ~ 0.85, feafetff <= 23.6 & feafetff > 21.4 ~ 0.75, feafetff <= 25.7 & feafetff > 23.6 ~ 0.65, feafetff <= 27.8 & feafetff > 25.7 ~ 0.55, feafetff <= 30.2 & feafetff > 27.8 ~ 0.45, feafetff <= 33.2 & feafetff > 30.2 ~ 0.35, feafetff <= 37.3 & feafetff > 33.2 ~ 0.25, feafetff <= 45.0 & feafetff > 37.3 ~ 0.15, feafetff <= 53.5 & feafetff > 45.0 ~ 0.08, feafetff <= 63.0 & feafetff > 53.5 ~ 0.04, feafetff > 63 ~ 0)) %>% group_by(domain) %>% count(feprob) %>% mutate(feprev=feprob*n) %>% summarise(sumprov=sum(feprev)) ```