Method: Life tables for Denmark for the years 1995 and 2012 were constructed from the numbers of deaths and population counts by single year of age, sex and calendar year, using Poisson regression and flexible functions. Life tables for intervening years were constructed by linear interpolation. See article in The Lancet (http://dx.doi.org/10.1016/S0140-6736(14)62038-9) for more details.
Source: Statistics Denmark (Danmarks Statistik)
Registry population (2009): 5,524,430

Year 1995

Table 1: Summary statistics

Sex	Life expectancy at birth (years)	Probability (\%) of dying between exact ages		
	72.8	$\mathbf{1 5 - 6 0}$ years	$\mathbf{6 0 - 8 5}$ years	$\mathbf{8 5 - 9 9}$ years
Female	78.1	14.7	77.1	98.5

Figure 1: Observed and fitted mortality rates (mx; logarithmic scale) by age and sex

Figure 2: Observed and fitted mortality rates (mx; arithmetic scale) by broad age band and sex

Figure 3: Fitted versus observed mortality rates: residual deviance
We plotted the deviance residuals of the model against age to assess goodness of fit. Deviance residuals are a measure of how closely the modelled values fit the observed data. They should be approximately normally distributed if the model fits the data well. The ideal range is between -2 and +2 (the red lines).

Table 1: Summary statistics

Sex	Life expectancy at birth (years)	Probability (\%) of dying between exact ages		
	77.9	$\mathbf{1 5 - 6 0}$ years	$\mathbf{6 0 - 8 5}$ years	$\mathbf{8 5 - 9 9}$ years
Female	82.0	9.0	62.5	97.3

Figure 1: Observed and fitted mortality rates (mx; logarithmic scale) by age and sex

Figure 2: Observed and fitted mortality rates (mx; arithmetic scale) by broad age band and sex

Figure 3: Fitted versus observed mortality rates: residual deviance
We plotted the deviance residuals of the model against age to assess goodness of fit. Deviance residuals are a measure of how closely the modelled values fit the observed data. They should be approximately normally distributed if the model fits the data well. The ideal range is between -2 and +2 (the red lines).

